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Some recent studies on the effects of truncation and aliasing errors on the large
eddy simulation (LES) of turbulent flows via the concept of modified wave number
are revisited. It is shown that all the results obtained for nonlinear partial differential
equations projected and advanced in time in spectral space are not straightforwardly
applicable to physical space calculations due to the nonequivalence by Fourier trans-
form of spectral aliasing errors and numerical errors on a set of grid points in physical
space. The consequences of spectral static aliasing errors on a set of grid points are
analyzed in one dimension of space for quadratic products and their derivatives. The
dynamical process that results through time stepping is illustrated on the Burgers
equation. A method based on midpoint interpolation is proposed to remove in phys-
ical space the static grid point errors involved in divergence forms. It is compared to
the sharp filtering technique on finer grids suggested by previous authors. Global per-
formances resulting from combination of static aliasing errors and truncation errors
are then discussed for all classical forms of the convective terms in Navier—Stokes
equations. Some analytical results previously obtained on the relative magnitude of
subgrid scale terms and numerical errors are confirmed with 3D realistic random
fields. The physical space dynamical behavior and the stability of typical associa-
tions of numerical schemes and forms of nonlinear terms are finally evaluated on the
LES of self-decaying homogeneous isotropic turbulence. Itis shown that the convec-
tive form (if conservative properties are not strictly required) associated with highly
resolving compact finite difference schemes provides the best compromise, which is
nearly equivalent to dealiased pseudo-spectral calculatiog2oo1 Eisevier Science
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INTRODUCTION

Numerical simulations of turbulent flows are mainly performed in two ways: For the
retical studies leading to fundamental knowledge of the physics of these flows and the
different modeling issues, spectral methods are best suited because of their extreme
racy and their well-established dealiasing techniques [2]. On the other hand, for high si;
turbulent flows such as supersonic mixing of reactants or for complex flow geometries,
has to work in physical space with finite difference or finite volume methods. Finite volum
are best suited for industrial Reynolds averaged Navier—Stokes simulations (RANS) v
unstructured meshes, whereas finite differences are mainly used in the direct nume
simulation (DNS) or large eddy simulation (LES) approaches, since higher order accur
is easier to achieve. Higher order methods are required in DNS or LES because a wide r.
of scales has to be properly represented. The resolution required for the accurate repr
tation of the smallest scales is linked to the numerical errors produced by the discretiza
of the governing equations and is discussed in [12].

A couple of years ago, our team performed the DNS of the 2D compressible tempc
mixing layer. Navier—Stokes equations were solved for conservative variables, with
nonlinear convection terms cast in conservation (or divergence) form, and the viscous te
in nonconservation form:

U, 9F , 4G _
at  ax  dy

Sixth-order compact schemes [7] were used for spatial discretization, and a third-ol
low storage Runge—Kutta scheme was used for time stepping. Boundary conditions v
periodic in the streamwise direction and nonreflecting (NSCBC) [17] in the transvel
direction. The Reynolds number based on the free stream velocities and the initial vorti
thicknesss was 200. The convective Mach number was 0.576. Discretization was 192
256 grid points in a 46 x 505 computational domain. At dimensionless tine: 60, the
calculation became unstable (Fig. 1a).
Performing the same calculation with equations cast in convective form,

9y FoU G . 9k
Edl_[] [] Vv []Ij_ij’
showed no sign of instability (Fig. 1b), and the integration could proceed until saturatior
the temporal box. Since the only change was in the form of nonlinear terms, we conclu
that the convective form had a better long-time behavior than the divergence one due
lower level of numerical errors (combination of discretization and aliasing errors).

The theoretical analysis of discretization errors for first or higher derivation schemes
received renewed interest since publication of the famous paper by Lele [7], who focuse«
theresolving efficiencyather than on the formal accuracy of the discrete schemes by me:
of the modified wave number (MWN). The computational efficiency, i.e., the operatit
count for a given well-resolved shortest scale, has then been emphasized, both for li
(e.g., [3]) and nonlinear problems [4]. Another source of numerical error arises from 1
nonconservation of transported variables by some discrete operators, which may vic
the physical conservation laws. Higher order schemes which conserve mass, momen
and kinetic energy in a discrete sense have been recently designed for uniform [14]
extended to nonuniform [18] grids.
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FIG. 1. Conservative variables. (a) divergence form; (b) convective form.

Nevertheless, the problem of aliasing errors for nonlinear partial differential equatic
(PDEs) advanced in physical space with finite difference schemes, although mentione
Lele [7], has not been clearly formulated. The reason is perhaps that in the past two dece
many studies on the effects of aliasing errors have been conducted in the framewor
spectral methods (e.qg., [13]), by analyzing the dynamical behavior of aliased and dealic
calculations, i.e., their differences in time evolution. The major issue was to compare
different forms of the nonlinear terms in Navier—Stokes equations projected in spectral sf
and their respective stability properties. In the same spirit, a previous study [6] mimick
the physical space behavior of finite differences for both aliasing and truncation errc
That is, pseudo-spectral codes were used with the MWN of the scheme to be tested ins
of the spectral wave number in derivatives, and with or without dealiasing. Results w
then extrapolated to physical space calculations. In fact, this is not straightforward ¢
may lead to erroneous conclusions for aliasing errors, and for combination of aliasing
truncation errors, mainly in LES applications where the spectral contents of the simula
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fields still have significant energy at the cutoff. For instance, the authors concluded t
the skew-symmetric form produces the lowest level of aliasing errors, which is true for
pseudo-spectral projection of Navier—Stokes equations but is not true when implemel
in physical space. This kind of confusion occurs frequently in the literature (e.g., [1]) a
has been the motivation for the present study. The following issues are addressed here

(i) What are the consequences, through inverse Fourier transform on a set of grid pc
in physical space, of dealiasing the Fourier coefficients of a quadratic product?

(i) What is the error introduced on a set of grid points in physical space for the fini
difference derivative of a spectrally aliased or dealiased quadratic product?

(iii) Are the spectral space projection and time advancement of a nonlinear PDE, w
MWNs substituted for spectral wave numbers in derivatives, of any help in analyzing 1
behavior of finite difference schemes implemented in physical space and advanced in’
for this PDE?

(iv) Is it possible to derive some numerical techniques to minimize numerical errors 1
PDEs solved in physical space and what would be their computational cost?

(v) What kind of dynamical error results in physical space through time advancemen
a nonlinear PDE cast in divergence or convective form in case of marginal resolution,
what are the conservation properties of the whole process?

(vi) In reference to (iii), what should be the correct procedure, using a pseudo-spec
code, to analyze the relative magnitude of discretization errors and subgrid terms in the |
of turbulent flows, and does the numerical experiment confirm some previous analyt
results [4]?

In the first section, we will recall briefly the concept of MWN to address items (i), (i), an
(iii) in one dimension of space. Item (iv) will then be discussed for filtering and interpolatic
techniques. The viscous Burgers equation will be a test case for item (v).

The second section will be devoted to item (vi). The suitable procedure to analyze the si
numerical errors introduced in the spatial discretization of filtered Navier—Stokes equati
will be explained. Error spectra will be presented for a realistic 3D pseudo-random veloc
field typical of the LES of isotropic turbulence and compared to the subgrid scale te
computed with the spectral eddy viscosity model of Lesieur and Metais [11]. This point
a numerical checking of some analytical bounds given by Ghosal [4], although his res
should apply to spectral projection of Navier—Stokes equations rather than to physical s
implementation of the numerical schemes. Finally, a dynamical study will show the eff
of numerical errors on the stability of self-decaying isotropic turbulence LES. The physi
space behavior of second-order centered and fourth-order spectral-like compact sch
will be mimicked for convective and divergence forms of the nonlinear terms and compa
to a dealiased pseudo-spectral simulation.

1. TRUNCATION, ALIASING, AND GRID ERRORS FOR NONLINEAR
TERMS IN PHYSICAL SPACE

In this section, we will use discrete Fourier transforms (DFTs) rather than the continu
one in analytical developments, since the numerical experiments to be presented in Sect
are implemented that way.
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1.1. Basic Concepts—Notations

We consider auniformgrid dff + 1 pointsx;, i =0, ..., N in physical space, discretiz-
ing acompact suppoxte [0, L] (L = 27 for simplicity) on which a periodic function(x)
is defined and is represented by the set of the discrete valuies{uN; i =0,..., N — 1}.
The discrete Fourier transform ofis given by itsN /2-degree trigonometric interpolant

N/2—1

uo) =ul = > el @)
k=—N/2
1 N2 .
~N O N o je Zik
0 = — u e Jen’e, 2
. Nzg | e

1.1.1. Modified wave numberApplying discrete firstD! and second? derivation
operators to (1) introduces modified wave numbers in the discrete representatioyid xf
andd?u/dx? built from uN,

du N/2—1
o
dxl FOIINw = 3 ek (@R, ®)
i k=—N/2
42U N/2—1 o
e ~ Di(Inu) = Y —K () e T, (4)
i k=—N/2

wherewy = k- AX. After applying the scaling, we obtain

o' (k) = A K (@), (5a)
o () = AXPK" (wy). (5b)

Equations (5) give the resolving efficiencies of the schemes, independently of grid size; ¢
for the second-order centered finite difference schesiiey) = sin(wy). For a spectral-like
compact first-derivative pentadiagonal scheme [7],

B (U/iN+2 + U/iN-2> to (U/iN+1 + u/iN—l) +uf

ulis —ully u, —ull, ug — Uy
= b 6
¢ BAX + 4AX ta 2AX ()
the reduced modified wave number is
, asin(wy) + (b/2) sin(2wy) + (¢/3) sin(3w)
w () = , (7)

1+ 20 coSwy) + 28 coY2wy)

and the scheme at sixth-order may be tuned to produce about 80% of resolving efficie
at 0.001 relative error. Since these schemes are centered, their MWNs are real and the
is purely dispersive.
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1.1.2. Aliasing. The term “aliasing” appears usually in the framework of pseudo
spectral evaluation of convolution sums [2]. Let= uv. Estimating the coefficients of
Inw pseudo-spectrally, i.e., by discrete Fourier transform of the point-wise prodt
(uiNUiN)!

N/2—1
~ N i 2T
INw(X) = u)iN = Z w&‘ekwlk, (8)
k=—N/2
1 N-1
B .
wIL\‘ = — UiNviNe_JCWIk, (9)
N “
i=0
gives
N/2—1 N/2—1
By = > ONT, 4+ Y ONDR N, k=-N/2...,N2—1  (10)
n=—N/2 n=—N/2

So, although its Fourier coefficients are contaminated by an aliasing error—the sec
sum in (10)—the discrete product is exact at grid nodes in physical space. If dealias
is performed for (10) by the 3/2 rule or phase shift, transformigback into physical
space will not givesN = uNvN at the grid points. The reason is that the discrete Fourie
transform (8) has bounded up 6N /2 modes the possiblyN modes which could have
been computed in a straightforward calculation of the convolution sum:

@ xoNye= Y ayoy.  nm=-N/2,... . N/2-1 (11)

n+m=Kk
So, we can consider (11) as the coefficients
q N1 §
~ON _ 2N —jc 2 jk _ _
w2 _2N§wj e ek k=_N,...,N=1, (12)
of the N-degree trigonometric interpolant
N—1 L
vw(X)) =w = > @PNelnlk  j=0... 2N-1, (13)
k=—N
of w(x) at the nodex; of a double density uniform physical grid
{iﬁ =x 1=0,...,N
X1 = (Xip1+X%)/2,

which could be estimated by the point-wise produgt'v¥") of the (exactly) interpolated
values ofu andv at the nodes; from their values at the nodes. So, in physical space,
the difference

e(x) = Inw(X) — lanw(X) (14)
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may be written at the nodes = x5 as

N/2—1 [/ Nj2—1

~N~N jo Zik
&= Z Z VINTARIVES [t ()

k=—N/2\n=—N/2

~N/2-1/ N/2-1 N-1 [ N/2-1
aN N je 5y 2k SN~N jo 2% 2ik
-2 | 2w, e O B oy, JeRRR an
k=—N \n=-N/2 k=N/2\n=—N/2

(15)

and is, of course, zero at these points by definition. So, the aliasing error (1) in the pseu
spectral estimation (9) and (10) takes the same values at the physical grid points as
error (Il) due to the bounding of (11) up tk| = k. = N/2. Both will vanish if the wave
number content ofi andv is zero for modes greater thdw/4 (what we call “marginal
resolution”), simply because in this case, tigoint grid can capture all of thid /2 modes

of the productuv). This answers item (i).

1.1.3. Aliasing and derivative errors.Let us apply a discret®} derivation operator to
(15). It gives readily

N/2—1 N/2—1
_ . .
Die = D (K@) > GYH .y Jev )
k=—N/2 n=-N/2
—N/2-1 N/2-1
=1 2 | JK@o D T, e
k=—N n=-N/2
N—1 N/2-1
. ~N ~ po2ms
+ 3 (K @o Y aNay, |eNk A an (16)
k=N/2 n=—N/2

This is precisely the kind of static error introduced at grid points bydilkergence form
implemented with a finite difference scheme in physical space, in case of marginal res
tion. This error occurs only through spatial differentiation of a discrete product, the prodi
itself being exact at grid nodes. It is emphasized by the resolving efficiency of the derivat
scheme. If dealiasing is performed for Fourier coefficients of the quadratic product bef
transforming back to physical space, part (I) of the error will still be at the grid nodes. C
the other hand, the convective form does not produce such anEnisanswers item (i)
Let us illustrate this with a simple example.

Consideru(x) = sin(15x) and w(x) = u?(x) = %(1 — co930x)). On aN = 32 point
grid, mode 30 will alias mode-2. So,Iyw looks like ak = —2 wave. If differentiation of
Inw is performed exactly, the result will be very different frdgpdw /d x (Fig. 2).

1.2. Physical Space versus Spectral Space Simulations

The question addressed in this section is the equivalence between calculations adva
in physical space with finite difference schemes and calculations advanced in spectral s
with MWN of the schemes, dealiased or not.
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FIG. 2. Derivative of a discrete productc—, |ydw/dX; &, lndw/dx; = d(1yW)/dx.

First, one has to distinguish betwestatic aliasing errors(i.e., those associated with
spatial discretization) and the dynamical process that results dmmnbination with time
stepping The viscous Burgers equation will serve as an example.

1.2.1. Divergence Form.We are seeking a numerical periodic solution in the interva
[0, L = 2x] to the initial and boundary value problem (IBVP), in which the nonlinear tern
is written inconservation (or divergence) form

qux,t) 8 /Uud(x,t) dfu(x.t)
st T ax ( > > v = 0, (17a)
u(x, 0) = ug(x). (17b)

Exact solutions are known from the Cole—Hopf transformation for any giygr).
Applying the so-called method of lines on &hpoint grid in physical space gives the
semi-discrete form of (17) as a systemMrdinary differential equations (ODES),

duM .
— 4+ = D(uNu)—vDiZ(uN)zo, i=0,...,N—1, (18)
dt 2
where(uNuN) is the vector whosieth component is the value at the nodef the product
N, N
The Fourier-collocation or pseudo-spectral approximation of (17) leads to

di
i+—Jck > oy fjck > ooy + vk =0, (19)
n+m=k n+m=k£N
aliasing

= —-N/2,...,N/2—1,

where thestaticaliasing error can be removed [2] by thg23rule to get

N/2—1
—C 4+ Sk YO GO, + KTy =0, k=-N/2,...,N/2—1. (20
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Now, working in physical space with (18) will produce at the nadehe error (16) for
duMN/dt — vD2(uN) before time integration, and this calculation is mimicked in spectre
space by (19) provided the MWNSs of the discrete differentiation operators are introduc
instead of the spectral derivatives. Transforming (20) back into physical space (with int
duction of MWNSs) will give

k,—N/z n=—N/2

N/2—-1 N/2—-1 _ .
e Z K@ > aNal, |ekFk —vp2wNy =0, (21)

Although the associated Fourier coefficients are dealiased, there still exists at; ibde
truncation part (Il) of the global error (16).

1.2.2. Convective form.If the convective form

u(x, t) ux t)au(x H 92u(x, t)
DXt —v—"—
ot X X2

=0 (22)

is used instead of (17), the method of lines in physical space will give

N
d—; +uMDruM) —vDZuM) =0, (23)

and since the numerical value of the produftD}(uN) is exact at physical grid points,
no static error is introduced before time integration e /dt — vD?(uN). Fourier-
collocation discretization of (22) reads

du AN -
k + >N (jemiy) + > G (jeminy) + vk =0, (24)
n4+m=Kk n+m=k+£N
or alternatively

di
”k Jck S oaval+ jc(k:I: Ny S aNay ok =0, (25)

n+m=Kk n+m=k+N

aliasing

nmk=-N/2,...,N/2—-1,

which differs from (19) in the aliasing term (which is of opposite sign, making the skev
symmetric form popular in pseudo-spectral methods). Introduction of the MWN in (2
will mimic (23); but if dealiasing is performed, that is,

d“k + > AN (jem' (myay ) + vk Rty =0, (26)

n+m=k

transforming (26) back into physical space does not correspond to any physical space f
difference implementation.
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1.2.3. Answertoitem (iii). From Sections 1.2.1 and 1.2.2, the numerical errors product
either by the divergence or the convective forms of nonlinear terms in physical space ca
mimicked and thus analyzed by pseudo-spectral codes with MWNSs, but without dealias
Dealiasing in pseudo-spectral calculations is of no help to the analysis of numerical erl
introduced in physical space calculations. Physical space errors should rather refer
calculation involvingonly MWN static errors and optimum conservation properties; that i
due to (11)—(13),

dud 1 ¥ e :
s > Ik @oae i —vDFuM =0, i =0....N-1 (@7)
k=—N

1.3. Toward the Lowest Error in Physical Space

The divergence form is very popular in physical space for its conservative propert
[14, 18], mainly in compressible flows, but has the drawback of introducing the high le\
of error previously described in the case of marginal resolution. So, numerical techniq
designed for reducing these errors may be useful for people working with this form. /
though dealiasing in spectral space is a well-known technique, there is at present timi
equivalence in physical space to get (27) from (18). In this section, two methods will
examined: filtering on finer grids and a midpoint interpolation technique.

1.3.1. Filtering. Quite recently, Ghosal [4] proposed the following technique to reduc
numerical errors. This technique is designed to damp the modes poorly resolved by
derivation scheme, i.e., the modes such khady) is, say, over 0.1% error away frokn If
we are only interested in (or if the solution is physically limited to) modes lower than or eqt
toks = 7 N/L = N/2, then, we can use a fin&t-point grid with higher numerical cutoff
k. = M/2 and apply a low-pass “sharp Fourier-like” filter to eliminate modes betigen
andk. which are generated by nonlinear interactions. Ghosal concluded Kaat i2k./3,
from the 2/3 rule, no aliasing errors could occur. This conclusion is also mentioned |
Lund [9] in the context of explicit and test filtering in dynamic LES of isotropic turbulenc
with a pseudo-spectral code.

Applied to the Burgers equation, the filtering technique reads

duM N 1
dt 2

D}HF@Yu™) —vDPu) =0, i=0..M-1 (28

whereF () stands for the filtering operator. Consider a true sharp Fourier cutoff at mo
ks. Filtered coefficients ofi are

M A oM G{Q" if K| < Ks,
., = F®&Kio) = 29
k (ot {0 otherwise (29)
Then we have
M/2—-1 . . ks ) )
IFUMuM ) = 37 Floapleliik = S gMelik =0, . M-1
k=—M/2 k=—ks
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Let us consider a single moéte= 1 initial condition (17b). Advancing (28) in time will
produce by nonlinear interactions higher modes until the filter is actually active, and at ¢
time the wave number content of the numerical solution will be limitekkt&o solving
(28) in physical space is equivalent to solving in spectral space

d"’M , kS 5 . ks . . , .
T + —jck (wk)F(k)< SOaya,+ D WG v | + K (@0l =0, (31)
n=—ks n=—Kks
k=—M/2,...,M/2—1, @M=0 ifN/2<kl<M/2

and the aliasing error will be zero up fik| = ks if kK — n += M = +kg, that is,

ks=M/3=§(M/2=kc). (32)

This is the 23 truncation rule for static dealiasing in spectral space. Rewriting (28) i
the form

du'V' M/21
Z (Jck(a)k)F(k)Z )eJCM —vD?uM) =0, (33)

dt —-M/2 n=—kg
i=0,....,M—1  ks<M/3

we can see that the convolution sum produces possible modes ranging-#lanto 2ks
and that the sharp Fourier filter truncates ittky, which is below the grid cutoff. The static
derivation error at the nodes for the nonlinear term then becomes

—ks—1
Dle=- ) (Jck%wk)F(k) Z )elckx

k=—2ks n=—Kks

2ks
- > <Jck’<wk>F<k> Z )elck* (34)

k=ks+1 n=—ks

which is part (II) of (16) combined with the transfer function of the filter in physical spac
Since itis very difficult to design sharp filters in physical space, thssfitering technique
may introduce some new kind of error due to the “nonsharpness” of the filter. The spect
like filters designed by Lele [7] are good candidates because of their easy tuning and |
accuracy. Pentadiagonal filters are built in the following way:

Bl +ul,) +a(uly, +aY,) +af

d (uls+uly). (35)

b c
=ay' + 5 (upy +ufly) + > (us +ufly) + 5

And the associated transfer function is

E (@) = a + bcogwy) + ccos2wy) + d cog3wy) (36)
W= 1+ 20 coSwy) + 28 cOS2wy) '
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0 0.5 1 1.5 2 25 3w

FIG. 3. Filtering transfer function (Eq. (36))®—, filter 1, fourth order: 1.500.95-2.000.50; &, filter 2,
fourth order: 1.800.95-2.300.50; 7% filter 3, sixth order: 1.800.80—2.50¢0.20.

Two parameters are free for tuning the scheme (by imposing the value of (36) at t
given reduced wave numbers) if a sixth order is imposed, or a fourth order with the
ditional constraintd?T /dw?(r) = 0, the conditiond T /dw(rr) = 0 being automatically
verified. The transfer functions of three different filters which are as sharp as possi
within a 2/3 cutoff are plotted on Fig. 3. In Fig. 4 is plotted the combination of the sixtt
order filtering transfer function 3 and the MWN of the derivation scheme (6). The lo
in resolving efficiency ato ~ 2 due to the physically designed “not-so-sharp” filter is
apparent.

1.3.2. Interpolation. Since from (15), spectral aliasing is equivalent to truncation fo
convolution sums when transformed back into physical space, we are led to deal with er
convolution sums to recover (27) in physical space. The problem is obviously the numer
estimation ofloyw(Xj) = utNv#N, that is, the interpolation afi andv at the nodes of a
double density physical grid and the associated numerical error. This can be achieved
a compact finite difference midpoint interpolation scheme such as those designed by

T

0 0.5 1 1.5 2 25 w 3

FIG. 4. MWN for derivative/filtering. —, exact:ll, derivative only (7):#-, derivative+ filtering (7)*(36).
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0 0.5 1 1.5 2 25 3

FIG.5. Interpolation transfer function (Eq. (38)). —, Exaet—, W = 2.10;-&~, W = 2.25;=-, W = 2.50.

[7], with spectral-like accuracy. The scheme reads

B(ul, +ully) +a(uly +ully) +ul

c b a
=3 (UiI\jrS/z + UiN—s/z) + > (Ui'\iua/z + UiN—a/z) + > (Ui’\jrl/z + uiN—l/Z) (37)
and may be tuned for order and transfer function. Designed that way, it gives readily
discrete values at nodesfrom the values at midpointg.;1> = (Xi + Xi+1)/2. Itisonly a
matter of translation of indices to get midpoint values from solid points values. The trans
function associated with scheme (37) is, at mkde

_acogwy/2) + bcog3wy/2) + ccogbwy/2)

T (@) 1+ 20 cojwy) + 28 co2wy)

(38)

and is plotted in Fig. 5 for a sixth-order scheme such that 1 anddT/dwy = 0 for
wx=2.10, 2.25, and 2.50.

The set of discrete valuag™ is now built by gathering solid pointsN and midpoint
interpolatedi™ values, i.e.,

G%INZUIN, i=0,...,N,
(39)

2N _ N -
U5, 1 = Uijq, i=0...,N—-1

Nevertheless, the coefficieni'i§N of I,yU are altered (compared to tho8f of Iyu)
since interpolation is not exact. From

N/2-1
SN o2 (i —
Nrul = ) T)iyelni-v2n (40)

n=—N/2

we have

0 = T (wn)tNe Jefn, (41)
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Hence,
1 N/2—1 N—1
o2N & gN jo & (M—n) jeZi(m—n)
Uy = o m;j/zum (1+ T (@m)es )ge wHmen, (42)

The last sum (overr) in (42) isN if m—n =rN; itis 0 otherwise. The possible values

forr are—1 and 0 ifm < 0, or 0 and 1 ifm > 0. So, each mode af¥ will produce two
modes foru?N:

" 1.

02 = SEN+ T (@m), (43a)
o 1,
uﬁzm—sign(m)N = éur’:(l = T(wm)). (43b)

That is,ui2N may be expressed as

1. 1.y.
e = ) SO A+ T@)Tem) + Y SN - T T(en). (44)
2 2
n+m=k n+m=k+N

nm=-N/2,...,N/2—-1 k=-N,...,N—-1

Notice that (43) and (44) are consistent with exact interpolation, i.e., with the ce
T (w) = 1, and that the error introduced by interpolation (the difference between (12) &
(44)) is due to both the transfer function of the interpolation scheme and the associ
“parasitic” modes (43b). This error reads

> anam A=Tn)T(@n) - Y 50,’352 (1= T(0n)T (wm)). (45)
2 2
n+m=k n+m=k+N

Figure 6 represents the error (45) at méade n + m of the convolution computed from
single mode real-valued functiomsandv, with |G| = |3}| = 1; n, m > 0. The aliasing
error is displayed in Fig. 7. The improvement is evident.

. Al
08 | il
0.6 IM’II’h’IIIII/’
0.5 Lk
0.4 Wizl
03 /

0.2 16
0.1 m
0
0
8
n 16

FIG. 6. Interpolation error for moda + m (Eq. (45)).



830 FEDIOUN, LARDJANE, AND GOKALP

FIG. 7. Aliasing error for moden + m (second sum in Eq. (10)).

Derivation ofw?N on the N-point grid, retaining only the result at solid poings= Xy,
will now give

N—-1
InD 2N (%) = DE (@) = Y jeK (@ w2k, (46)
k=—N

If we assumev = u and consider modds= n 4+ m, |n — m| and their opposites, the
MWN of scheme (46) is

_ 1
K (wk=n+m ) = Ek/(a)k)(lJrT(wn)T(wm)), (47)

k=|n—m|

and for the parasitic modes

€ (0gpeman ) = 3@ 0= T@T@m. (48)
k=—|n—m|+N 2
Reduced wave numbers (47) and (48) are plotted in Fig.8 fom. The loss in resolving
efficiency due to interpolation is negligible compared to that in Fig. 4, and parasitic moc
that appear in the energetic range of the spectrum are kept at very low level due to
spectral-like accuracy of the schemes.
So, applied to the viscous Burgers equation, the interpolation technique reads

du 1 = / ~ON pjo 2 2k 2/, N ;
— = jcK (@) wi el —yDAU™) =0, i=0,...,N—1 (49
dt 2
k=—N
1.3.3. Filtering versus interpolation.We have chosen here an example specially de
signed to enhance the error (34) in the filtering technique for illustration.
Applied to the convolutiony (x) = u?(x) for u(x) = sinkyx + sink,x, filtering Eq. (30)
with N = 32; M = 48 in the nonN-aliasedk; = 6; k, = 8 andN-aliasedk; = 10; k, =
13 cases gives the results plotted respectively on Figs. 9 and 10. In the non-aliased cas
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0 0.5 1 1.5 2 25 w 3

FIG.8. MWN derivation and interpolation. —, Exac#t-, derivation only (7):4-, derivative+ Interpolation
(47); —@—, parasitic modes (48).

effect of the “nonsharpness” of the filter is clearly pointed out. In the aliased (dealiased
filtering) case, the strong damping of modes 20 and 23, which could stay on the 48-p
grid, and of mode 26 (aliasing the mode 22) leaves only mode 3 and leads to large erro
grid points for the filtered quadratic products. On the other hand, the interpolation techni
does not affect the solid points’ values.

Comparison is shown in Fig. 11 for the derivative of filtered and interpolated convol
tion in the aliased case. The result is clear. Nevertheless, in real calculations (e.g., ¢
Section 1.4), the filtering technique is expected to do much better.

One can estimate roughly the extra cost of both methods (Egs. (28) and (49)) comp:
to the standard one (Eq. (18)): The structure of the matrix formulation of scheme (6) le:
to a globalO(N) cost. So, first and second derivatives estimation in (18)%sQ@(N).

The spatial discretization for Eq. (28) iS2(3N/2) plus an extraD (3N /2) for filtering,
and an extra/,O(N) for the product. So the extra cost i©8N) per time step. The CFL
stability criterion imposes a/3 ratio in time stepping. The interpolation requit®gN)
operation and the derivation requir€g2N). The extra cost is then@(N) plus an extra
O(N) for the product; thus it is the same extra cost as for the filtering technique on the fi
3N/2 grid, while the time stepping is unchanged.

FIG. 9. Filtered convolution (Eqg. (30)), for modes 6 and 8, with no aliasitili-, Exact; — —, filter 1,
—, filter 2; — -, filter 3.
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29 1 2 3

FIG. 10. Filtered convolution (Eq. (30)), for modes 10 and 13, with aliasing for modes 6, 9, and 1.
-, Exact; ——, filter 1; —; filter 2; — -, filter 3.

Interpolation seems to be a better technique than filtering to make the divergence f
nearly grid-exact and therefore equivalent to the convective form (for smooth problems
physical space. Nevertheless, with a suitable filter, the filtering technique may be use
ensure a stable, oscillation-free numerical solution [T6]s answers item (iv).

1.4. Dynamical Tests on the Burgers Equation

The Burgers equation is solved on Bn= 128 point grid for the initial conditiomy =
sinx onanL = 27 domain. The time stepping is achieved with a fourth-order Runge—Kut
scheme withAt = 10~ to push the temporal errors below the spatial ones.

1.4.1. 12 norm of error. First, the discreté.2 norm of error,

1 N—1 ) 1/2
||UN — Uexactl L2(1) = <N Iz:; (uiN (t) — Uexac(Xi, t)) ) ’

is evaluated in the viscous case for which an exact solution is known [19]. For a value
v = 0.01, the exact solution spectrum reaches half the grid clteff32 at timet ~ 0.45
and reaches the grid cutdff = 64 at timet ~ 0.70, with an amplitudéliexac(K)| &~ 10719,
No aliasing error can occur befote~ 0.45. Equations (18), (23), (28), and (49) are

-50 1

-100 A

-150 -

FIG. 11. Derivative of convolution, for modes 10 and 13, with aliasing for modes 6, 9, anM1Exact;
—, interpolation;-©—, aliased:——, filter 1; @, filter 2; 2, filter 3.
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1.E-05

1.E-06 -

1.E-07 1

1.E-08 -

1.E-09

1.E-10 1

1.E-11 -

FIG. 12. L2 norm of error for viscous Burgers equation in early stages-, Eq. (18);—#, Eq. (19);
—, Eq. (20);=—, Eq. (23);5 Eq. (24)i>, Eq. (28);>«, Eq. (28) withM = N; -@-, Eq. (49).

solved in physical space with finite difference scheme (6). Equations (19), (20), and (24)
solved in spectral space with a pseudo-spectral code, dealiased (Eq. 20) or not (Egs.
and (24)).

In the early stages of the computation (Fig. 12), since only discretization errors are
volved, spectral simulations (19), (20), and (24) give the exact solution at machine precis
and the MWN effect in the finite difference calculations appears first for the divergence fo
(18) which has to deal with twice the wave humber content felt in the convective form (2
The transfer function of the filtering scheme combined with the MWV of the first derivati\
gives a higher numerical error, although the global resolution in (28\i&3 The results
of (28) forM = 126~ N grid points are also displayed. The interpolation technique (4¢
provides a good balance between the loss in precision due to its transfer function anc
increase in resolving efficiency of the derivative scheme.

At t =~ 0.45, the time stepping begins to act on aliased nonlinearities due to margi
resolution and the error for the convective form (23) begins to grow. The aliasing errors
the spectral calculations (19) and (24) are harmless for this problemt uatil.70 when
the solution itself begins to be under-resolved.

Once under-resolution is reached (Fig. 13), the better job is done by (28) since i
one-half more resolved than other calculations. Aliasing errors in spectral calculations
dominant for the divergence form (19), but have a stabilizing effect (opposite to the Git
phenomenon in (20)) for the convective form (24). MWNs in finite difference calculatior
damp aliasing errors at high wave numbers and so (18) does better than (19), and (23)
a little worse than (24). The interpolation technique (49) gives nearly the same level of el
as (23), though it is slightly increased by the transfer function of the interpolation scher
The solution at timé = 1.6, when errors are maximum, is shown on Fig. 14 for (18), (23
(28), and (49).

1.4.2. Energy conservation.To check the energy conservation of the discrete method
the viscosity is set to zero. No analytical solution exists, but the energy must be consel
by nonlinear terms in this periodic problem. The energy in the discrete solution is

1 N—-1
ED) = > uM
i=0
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0.06 A
0.05 A
0.04 A
0.03 1

0.02 A

0.01 1

0.00 T
1 1.2 14 1.6 1.8 t

o L

FIG. 13. L2 norm of error for viscous Burgers equation after under-resolution is maeeg.Eq. (18);
-B-, Eq. (19); —, Eq. (20y%—, Eq. (23):-5, Eq. (24):%, Eq. (28);>, Eq. (28) withM = N; -@—, Eq. (49).

Theoretically, the fully discrete approximation must use a symmetric time scheme to ¢
isfy the conservation properties of the semi-discrete one [2]. Here, the very small time <
in the nonsymmetric Runge—Kutta scheme makes the semi- and fully discrete approxi
tions numerically equivalent at machine precision. This is checked for the spectral dealiz
calculation (20).

Figure 15 displays the evolutioE(t) — E(0). The divergence form is unstable for
both aliased spectral (19) and finite difference (18) calculations, as already mentiol
by Kravchenko and Moin [6]. The convective form does not conserve energy and the in
polation technique (49) is once again very close to (23). The filtering technique (28) is
most conservative on the finer grid but rather dissipative on the standardlgiscanswers
item (v).

1.5. Conclusions of the First Part

In the first part of this study, we have pointed out that the divergence form of nonline
PDEs advanced in time in physical space with spectral-like schemes may produce I

0.7 - T T T T T u—\

2 22 24 26 28 3 X320

FIG. 14. Solution of viscous Burgers equation at= 1.6. —, Exact;——, Eq. (18); <—, Eq. (23);
-@-, Eq. (49);5, Eq. (28);>«, Eq. (28) with M= N.
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3.E-04 E(t)-E(0)
2.E-04 T

1.E-04 1

0.E+00 4

0
-1.E-04 A

-2.E-04 A

-3.E-04 -

FIG. 15. Evolution of energy for inviscid Burgers equatior®—, Eq. (18);#—, Eq. (19); —, Eq. (20);
—<—, Eq. (23);=, Eq. (24);-, Eq. (28);>«, Eq. (28.) with M= N; -@-, Eq. (49).

errors due to the combination of static aliasing and time stepping. The convective fo
on the other hand, has better long-time behavior. These errors may be mimicked u
aliased pseudo-spectral codes with MWNs of the scheme, but spectral dealiasing do¢
provide any straightforward information for physical space implementation of finite diffe
ence schemes. This is the key point for the second part of this paper. The divergence
associated with a midpoint interpolation technique is nearly equivalent to the convec
form, which is grid-exact before time stepping. Using a finer grid and applying a filterir
operation is a suitable method for smoothing the solution and hence improving the glc
stability of the numerical method, butitis more expensive due to refinement in time stepp
required by stability conditions (e.g., CFL).

2. NUMERICAL TESTS FOR FILTERED NAVIER-STOKES EQUATIONS

We turn now to the LES of the Navier—Stokes equations to compare the relative m
nitude of aliasing and truncation errors with the subgrid scale term for various forr
of the nonlinearities which will be detailed in Section 2.2, and for two discretizatic
schemes:

e DF2: second-order central finite difference scheme and
e SL4: fourth-order compact scheme (6) with 80.0% of resolving efficiency at 0.1
error.

The reference pseudo-spectral discretization schemes will be referred to as

e SP: Fourier-collocation (aliased) and
e SPDA: Fourier-collocation dealiased.

This numerical experimentis performed on self-decaying isotropic homogeneous turbule
with a pseudo-spectral code at resolutiod.48

2.1. Static Aliasing in 3D

In three dimensions of space, pseudo-spectral evaluation of convolution sums prod
more complex aliasing errors. Considering a cubical domain of @ize 2r7)3 aligned
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with the orthonormal basig, e, e3), the discrete representation of a scalar figl) is

I3uco = u;, = Z O € (50a)
Clklezkg N3 Z i1ioi3 _JCk'Xf (50b)
where
X = Xji,€1 + X3i,€ + X3i,€3,
ioL .
Xy = —~—\ ip=0,...,N—1, =123
“ N
and

k= I(1n191 + k2nge2 + k3n3e37
2

Kon, =N =Mar Na=—N/2....N/2-1  a=123

are discrete grid points and discrete wave vectors respectively. The discrete represent
of the productw (x) = u(x)v(x) is then

jok-
':\slw(x) = |1I2|3 Z wk1k2k3eJ X (Sla)
iI)klegk3 = N3 Z I1I2I3 I1I2I3e JC (Slb)
with
~N ~ -~ =~
Wiakoks = Z uplpzps qlqzq3 +S+D+T, (52)
p+a=k
3
simple aliasing S= Z( > G'glpzp;('ﬂqz%) (53a)
=1 \ p+g=k+Ne,

3
double aliasing D=

~N ~N
( u P1p2 Ps CI1C|zC|3> (53b)
a=1 \ p+g=k=N(e1t+e,+e3)Ae,

. . . ad _ ~N ~N
triple aliasing T = Z U, pr ps Vo aotis (53c)
p-+g=k=N(e;+ex+€3)

Dealiasing technigues developed in one dimension of space are directly applicabl
(52) [2].
2.2. Navier—Stokes Equations

Global quality of numerical simulation of Navier—Stokes equations (DNS and most
LES) depends on the dynamical behavior of truncation and aliasing errors introduce
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the discretization of the nonlinear convection telin For an incompressible fluid, using
Einstein’s convention,

U =0, (54)
au

1
P =PIl (55)

N; may be written in various forms that are analytically but not numerically equivalent:

N' = (uiuj);  (divergence form) (56a)
N? = uiuj | + uju | (convective form) (56b)
N2 = %(Nil +N?)  (skew-symmetric form) (56¢)
N = &ijk (k) + %(Uj uj) i (rotational form 1) (56d)
N*2 = eijk (oxU;j) + Ui ju; (rotational form 2) (56e)

Wk = EkimUm,| -

For pseudo-spectral discretization, only aliasing errors differ from one form to the oth
but working with finite difference schemes, either in physical space or in spectral sp:
with the MWN, will produce various interactions of truncation and aliasing errors due
the nonlinearity of the MWN. The Fourier coefficients associated with (56), where the prit
symbol stands for finite difference derivatives, are

N (k) = jeKj (o) Y Gi(P)T;(@) + St + D1+ T, (57a)
p+a=k
N2k = je > (pj(wp) + 0] (eq))Bi@;@ +S+D2+ T2, (57b)
p+ag=k
R Gk) = %(N{l(k) +R2K)). (57¢)
N/L(K) = gijkenimic Z P (wp ) m(P)Tj ()
p+a=k
1. N N = ~ ~
+5cki (@) > U@ + Sa1+ Dar + Tas, (57d)
p+g=k
Ni*2(k) = &ijkenimic Z Pl (wp ) Um(P)Tj ()
p+a=k
+ e Z p; (wp, ) Gi (p)T; (@) + Si2+ Dz + Taz. (57e)
p+a=k

In the spectral projection of (54) and (55), one has to choose one of the various fol
of (57). Another choice is given between preserving a divergence-free velocity field or r
that is, ensuring the analytical equivalence and conservation properties for all forms [:
Taking only truncation and aliasing errors into consideration ensures conservation. Stal
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from the Navier—Stokes equations in spectral space

jckiGi =0, (58)
Oi + Ni = —jcki P — vk20;, P=p/p, (59)

the pressure may be eliminated by taking the divergence of (59). If the MWNSs are introdu
only in (59), the divergence-free velocity field is achieved at machine precision and 1
“biased” projection tensor on the plane normaktis introduced:

P (k) = & (60)

_ A%
kiki
The differences between spectral and biased projection tensors are plotted on Fig. 1!

schemes DF2 and SL4, in the two-dimensional case. For the diagonal Rgrasd Py,

one can see amplification in one direction of space and damping in the other, where:
strong asymmetry is observed for its deviatoric @, mostly for higher modes.
So, the system of equations to be solved numerically is

i = —Pj N — vk (61)

13 15 5
10 15 x 10 15
v 20 20 y 20 20

FIG. 16. Difference between spectral and biased projection tensors: (a) diagonal term SL4; (b) diagonal t:
DF2; (c) deviatoric term SL4; (d) deviatoric term DF2.
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TABLE |
Equivalence of Nonlinear Terms by Fourier Transform

Physical space Spectral space (all undealiased)
N* _— Nt
N! + exact interpolation ———
N2 —_— N2
N3+ exact interpolation ———
N3 —_— N3
N41 N“
N# + exact interpolation ———
N42 —_ N42

2.3. The Numerical Study

2.3.1. Methodology. The first part of the numerical experiment is aimed at comparin
errors of truncation and static aliasing for the various forms (56) and (57) of the nonlin
terms, applied to a filtered three-dimensional velocity field typical of an LES of isotrop
homogeneous turbulence. The MWNs of schemes DF2 and SL4 are or are not introdt
in a pseudo-spectral code for which dealiasing may or may not be performed.

From the results of the first part in Section 1.1 the convedi¢eand rotationalN*?
are grid-exact in physical space, althoug§f and N*2 are aliased in spectral space. The
divergenceN?* form produces a static numerical error at grid points in physical space whi
is equivalent by Fourier transform to the spectral static aliasidgloSkew-symmetridN3
and rotationaN“! produce static errors in physical space which are not related by Four
transform to the spectral static aliasingofandN“L. Table | gives equivalencies by Fourier
transform between physical space and aliased spectral space calculations. Solid arrows
full equivalence, i.e., with or without MWNSs, and dashed arrows mean equivalence ol
for exact derivatives.

The static analysis of errors for various forms is done from the error spectrum as in [4
the following way. Suppose théiREF(k) is the ith spectral component of a vector reference
value and5TEST(k) is its avatar obtained with a method to be characterized. The differen

is evaluated in spectral space at all discrete wave vectors. The error spectrum is then
puted at modé& by integration on the sphe of radiusk and averaging over=1, 2, 3
since homogeneity and isotropy are prescribed:

3
1 1
EEEILTEST(k) =2 Z e /Ak ’AEIIEILTEST(k)| d Ak (63)
i=1

So, truncation alone, aliasing alone, and global error spectra may be obtained for
forms N" implemented in physical space from calculations in spectral space, as explai
in Table Il. “SP” means spectral derivatives and “FD” means introduction of either DF2
SL4 finite difference MWNSs in derivativeg)l calculations being aliased.
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TABLE Il
Procedure Technique for Error Analysis

Form  Aliasing alone  Truncation alone  Global error

N* ng_ Nép Nép_ Néo N%P_ NéD
N2 None NZ, — N2,
N RN RN R
N RE-RE RE-RS NG
N4 None N4 — N2

2.3.2. Random velocity field generationo perform a realistic study, a 3D Kolmogorov
energy spectrum peaking lat = 5, showing an infrared region kf and an inertial range
in k=53 reaching the cutoff dt. = 23, is prescribed:

E(k ke, Osk=lk, 64
()_{k—5/3, ki <k <k 64

Introducing the spectral vector stream functifmk) such that
8 (k) = jek;&iji P (K) (65)
gives
Gi G = (1— 850 (ki kj Bl — Kk B B5). (66)

On the sphere)¢ of radiusk, where the ensemble average operdtds applied on the
direction (or phase) of the wave vectoand the Dirac delta(0) vanishes using a DFT, the
relation

E k) ) T, Tk
271(|<2 = ((1 = 80 (ki kj W Wi — K ki W) (67)

has constant values. Thank) is built by
Wi (k) = w(k)el4 ), (68)

where6; walks randomly in [0, 2].
So, on the spheréy

Ek .
B0 — w0 (- 310(kky kO )) ©
and
Ek)\"?
v = () (70)

which gives, together with (65) and (68), the divergence-free random test field. It is checl
a posteriorithat the prescribed energy spectrum (64) is recovered (Fig. 17). Its probabil
density function is Gaussian.
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FIG. 17. Energy spectrurill, Recovered; —, prescribed.

2.4. LES Formalism and Subgrid Modeling
The eddy-viscosity assumption for the closure of filtered Navier—Stokes equations
spectral space leads to [8]

(; w+v (k|kc))k”)0 k,t) = ti,_ (k, 1), (71)
where
ti < (K, 1) = P{ NPk, 1) (72)

represents spectral transfer at méday triadic interactions between modesndq such
thatp + g = k, from the filtered velocity field and the biased projector (60). For the forr
N? (dealiased), it reads

ti e (K, 1) = —jeki (@i ) PIGO D> TG, DT, 1), (73)
p+a=k
Iplandglandk|<kc

Subgrid scale transfers are modeled from the concept of spectral eddy viscosit
Kraichnan [5] with the dynamic model developed byetdiset al. [10], which allows
for ak~™ energy spectrum at the cutoff;

1/2
Ek, t)> . (74)

ke

The eddy viscosity, normalized with the value of the spectrum at the cutoff, is amende
produce a cusp neéix where the energetic transfer is more important:

ik ke) = v”(klkc)(

V(K ko) = 11+ (1+ 34.5e7303k/k)) (75)

Fork. lying in the middle of &k~ Kolmogorov inertial range, the asymptotic (plateau
value) of (75),

0310‘3/2 3-m¥2 76
———] ( m) (76)
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4.E-04 A

3.E-04

FIG. 18. Spectral aliasingll, N*; A, N?; @, N3; [, N*; A, N“2,

recovers its eddy damped quasi-normal Markovian theory (EDQNM) predicted value
i+ = 0.441C %% ~ 0.267.

Note thatin (71), the produetk” allows for a straightforward analysis of the interactions
of the subgrid scale model and the second order derivation scheme (Section 2.5.3).

2.5. Term by Term Analysis

2.5.1. Convectiveterms™ Figures 18to 29 show aliasing, truncation, and global erro
spectra with the same scaling for a better visual comparison. In spectral space, all fo
produce aliasing errors (Fig. 18). Spectral aliasing errors spectra have been calcul
from the difference between spectral aliased and dealiased calculations. As expected
Egs. (56a), (56c), and (56d), the amplitude of grid errors in physical space due to spec
aliasing forN? is one half that foN* or N4 (Fig. 19). It is clearly seen that the results are
not equivalent to those of Fig. 18. Truncation for DF2 (Fig. 20) is much larger than for Sl
(Fig. 21) from the early wave numbers to the cutoff, and it is more significaritifoand
N“! because more derivatives are involved thaNin The global error is finally dominated
by truncation for DF2 (Fig. 22) and by aliasing for SL4 (Fig. 23), as expected from its hi

4.E-04

FIG. 19. Aliasing alonel, N*; @, N3; [, N“,
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FIG. 20. Truncation alone for DFZM, N'; @, N3; [, N4,

resolving efficiency. The coupl&?, SL4) gives the best global results and the coupl (
DF2) gives the worst.

2.5.2. Spectral Transfer.Elimination of the pressure term in the Navier—Stokes equa
tions in spectral space (61) has produced a coupling between the biased projector (60
the convective terms (57). The results (73) for the fo¥ith computed spectrally and with
MWNSs of DF2 and SL4 are plotted in Fig. 24. The poor resolving efficiency of DF2 damj
this transfer in the inertial range and diminishes the production of high wave number moc
On the other hand, the compact scheme produces only little damping of modes very neas
cutoff, in the same order of magnitude as dealiasing does for the pseudo-spectral calcul
(Fig. 25).

2.5.3. Viscous and subgrid scale dissipatioithe diffusion term(v + vt (K | ke))K"Gi (K,
t), is governed by the interaction of the subgrid scale model with the errors of the seco
order derivation scheme via the produbk”. Once again, the poor resolving efficiency of
DF2 (Fig. 26), associated with the “plateau-cusp” model, leads to quite the same resu
a spectral or spectral-like scheme associated with a constant subgrid eddy viscosity.
The diffusion term itself is plotted on Fig. 27. Large discrepancies are observed
the second-order scheme, compared to spectral or SL4 schemes. So a question mt

4.E-04
3.E-04 A

2.E-04

1.E-04

FIG. 21. Truncation alone for SL4, N*; @, N3; [, N4,
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FIG. 22. Global error for DF2H, N*; A, N?; @, N%; [0, N*; A, N*2,

4.E-04 1

3.E-04 1
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FIG. 28. Total error compared to subgrid term for SL4. —, SGS term—clkpy*; A, NZ; @, N3; [0, N4,
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posed: What sense does low order LES make when the physics introduced in the suk
modeling is polluted so dramatically? Here, we are dealing with centered, nondissipal
finite difference schemes. Therefore, it would be even worse using the so-called MIL
approach with monotonic or total variation diminishing (TVD) schemes, as is sometim
done. Nevertheless, in the DNS case where simulated fields have very little energy at
cutoff, the situation may be acceptable.

2.5.4 Total error compared to subgrid termThe total static error is accumulated on
the unsteady terrﬁ,t(k, t) of (71) as the sum of spectral transfer and diffusion errors.

The fourth-order compact scheme error is dominated by aliasing errors for fétms
N3, andN*! whose magnitude is comparable to the subgrid diffusion term in the last thi
of the wave number range. The grid-ex&&t and N*2 forms provide excellent low level
error over the whole wave number range (Fig. 28).

On the other hand, truncation errors for DF2 overcome the magnitude of the sub
term for nearly all the wave numbers, independently of the fbifhof the nonlinear terms
(Fig. 29). Since for DF2, both spectral transfer (Fig. 24) and subgrid scale dissipat

1.E-03 T T T T )
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1.E-05 -

1.E-06 -

1.E-07 -

FIG. 29. Total error compared to subgird term for DF2. —, SGS term—clsp\*; A, N?; @, N3; [J,N%;
A, N#2,
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(Fig. 27) are damped from the beginning of the inertial range to the cutoff, a dynami
study is now necessary to see if both effects can compensate each other for long-
integration, i.e., the analysis of stability for total discretization errors.

2.6. Dynamical Test Case

We now run the LES of self-decaying homogeneous turbulence’ate$8lution with
forms N! and N2. The reference calculation is provided by pseudo-spectral dealias
(SPDA) discretization, and comparison is made for DF2 and SL4 finite differences schen
whose physical space behavior is mimicked by aliased pseudo-spectral calculation
substitution of MWNSs in the derivatives. Time stepping is achieved with a second-ort
Adams—Bashforth (AB2) scheme for nonlinear terms and a Crank—Nicolson implicit sche
for diffusion terms. The initial field is built as described in Section 2.3.2, with an enert
spectrum peaking &; and ak" initial infrared range

1/ 4 —(n+1)/2 n+1
_ n A—4(k/k;)? Al (2 r
k0= A, LAY (),

For the given value oA, the initial normalized kinetic enerdy is 1. The initial infrared
slope isn = 8 and the energetic peak iskat= 8.

The performances of the schemes to be tested are evaluated from the time evolution c
energy spectrum and associated kinetic energy. Dimensionless time is referred to as
eddy turnover timegké/zk| )~L. An interesting feature of the subgrid scale model (74) is it
ability to be inactive as long as the spectrum has no energy at the cutoff. So, one can ct
in the early stages of the simulation, the stability of spectral transfer discretization and
emergence of the inertial range independently of the subgrid dissipation, as in Section
Figure 30 displays the energy spectra at 2. The inertial range is not yet established anc
the solution is fully resolved. One can see that the association DF2/AB2 is unstable, ma
with the form N2 but also withN1, because of the amplification of all modes.

Thisis also visible in the early time evolution of the kinetic energy, theoretically conserv
by triadic interactions. This behavior is strictly respected by SPDA, whereas DF2/N1 &
DF2/N2 produce an amplification by instability and SL4 produces a little damping (Figs.
and 32), as already mentioned in [6]. DF2/N2 is more unstable than DF2/N1 because alia

0.15 1
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0.05 T

0.00 -
0 5 10 15 20 25

FIG. 30. Energy spectra dt= 2. —, SPDA;[], SL4/N1;/A, DF2/N1;H, SL4/,N2; A, DF2/N2.
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FIG. 32. Early time evolution of kinetic energy. —, SPDA], SL4/N1;<, DF2/N1;H, SL4/N2; 4, DF2/N2.
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FIG. 34. Energy spectra at= 40. —, SPDA;C, SL4/N1;<, DF2/N1;l, SL4/N2; 4, DF2/N2; — k%3,

errors ofN?® are reported mainly at high wave numbers and compensate numerically for
poor MWNs of the scheme.

As soon as the subgrid scale model begins to be active2.5), the diffusion term
stabilizes DF2, and SL4 tends to reach a similar behavior as SPDA. Finalky, 40 a very
good decay law in—128 [15] is observed for SPDA while DF2 and SL4 are still keeping
the memory of their initial evolutions but tend to reach asymptotically toward the referer
law (Fig. 33), since the dynamical subgrid model adapts itself to numerical errors.

In Fig. 34 the energy spectra for schemes SPDA, DF2, and SL4 are plotted. The dyne
subgrid model provides a slope at the cutoff of abebt7/3 for the reference SPDA, in
accordance with previous calculations at higher resolutiod &6l 128) by Lesieur and
coworkers [11]. This average value is very sensitive to the range of wave numbers ¢
which the least-squares fit is done to find the exponetd be put into (762). No attempt
has been made to optimize the fitting range (to get closei5i8); the aim of this study is
simply to compare DF2 and SL4 to the reference case SPDA.

So, the dynamical approach permits us to conclude that no error nagyrtzei negligible
in an LES due to the high energy level present in the modes near the cutoff, which are mc
affected by aliasing and truncation. Compared to the reference case SPDA, aliasing e
of the divergence forrN emphasized by the high resolving efficiency of SL4 produce
slightly different time evolution of the solution. The association SL4/N2 in physical space
nearly equivalent to a dealiased pseudo-spectral calculation. The second-order truncati
DF2 associated with time stepping makes the global scheme unstable for the hyperbolic
of the equations. Introduction of subgrid dissipation leads finally to a surprising acceptz
balance, which is better than what one would expect with such a low order scheme.

CONCLUSION

In this paper, some issues on numerical errors in direct and large eddy simulation
turbulence have been revisited. The numerical equivalence between physical space
plementation of finite difference schemes and spectral space calculations involving
associated modified wave numbers has been discussed for nonlinear PDEs in diverg
or convective forms. It has been shown that only aliased pseudo-spectral calculations
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reproduce the errors at grid points in physical space. The suitable procedure, using a pse
spectral code with MWNSs instead of wave numbers in derivatives, has then been establi
for the analysis of truncation errors, aliasing errors, and combination of both in the fin
difference LES of turbulent flows.

This procedure has been applied to self-decaying homogeneous isotropic turbule
Static numerical errors have been evaluated for second-order and highly resolving si
order compact finite difference schemes, for all forms of nonlinear terms in the Navie
Stokes equations. Conclusions are as follows:

e Physical space implementation of low-order/resolving efficiency schemes produce
numerical error dominated by truncation whatever form is used.

e Highly resolving schemes emphasize aliasing errors and should be used in conjunc
with convective forms.

An interpolation technique in physical space has been proposed to reduce at reasor
cost the numerical errors of the divergence form at grid points. Whether it is worth impl
menting it in practical simulations depends on the conservative properties required for
discretized equations.
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